FITTING CLASSES F SUCH THAT ALL FINITE GROUPS HAVE F-INJECTORS

BY

M. J. IRANZO AND F. PÉREZ MONASOR Departamento de Algebra y Fundamentos, Facultad de Ciencias Matemáticas, Universidad de Valencia, Spain

ABSTRACT

Let \mathscr{F} be an homomorph and Fitting class such that $E_z \mathscr{F} = \mathscr{F}$. In this paper we prove that if all \mathscr{F} -constrained groups have \mathscr{F} -injectors, then all groups have \mathscr{F} -injectors. In particular if \mathscr{F} is a class of quasinilpotent groups containing the nilpotent groups, then every group has \mathscr{F} -injectors.

Introduction. Notation

All groups considered throughout this paper will be finite. We denote by \mathcal{N} the class of nilpotent groups and by \mathcal{N}^* the class of quasinilpotent groups, i.e.

$$\mathcal{N}^* = \{ G \mid G = F(G)L(G) = F^*(G) \}.$$

(For the basic properties of quasinilpotent groups and of the \mathcal{N}^* -radical $F^*(G)$ of a group G, the reader is referred to ([4]) X. ϕ 13; we shall use these properties without further reference.) The concept of semisimple group is taken from Gorenstein-Walter's paper ([3]). We denote by L(G) the semisimple radical of G, L(G) is sometimes called the layer of G. A group G is \mathcal{N} -constrained if $C_G(F(G)) \leq F(G)$ ([7]) and a group G is \mathcal{N} -constrained if and only if L(G) = 1 ([8]).

Throughout the paper \mathscr{F} means an homomorph of Fitting such that $E_z \mathscr{F} = \mathscr{F}$ (i.e. if $G/Z(G) \in \mathscr{F}$ then $G \in \mathscr{F}$). A group G is \mathscr{F} -constrained if $C_G(G_{\mathscr{F}}) \leq G_{\mathscr{F}}$, where $G_{\mathscr{F}}$ is the \mathscr{F} -radical of G. The class of \mathscr{F} -constrained groups is a Fitting class denoted by $X_{\mathscr{F}}$ and a group G is \mathscr{F} -constrained if and only if $L(G) \in \mathscr{F}$ ([5]).

In 1971 A. Mann proved that an \mathcal{N} -constrained group has a unique conjugacy class of \mathcal{N} -injectors. Blessenohl and Laue proved that all groups have a unique conjugacy class of \mathcal{N}^* -injectors. It is well known that all groups are \mathcal{N}^* -

Received October 8, 1985

constrained. In ([5]) we proved that if $\mathcal{N} \subseteq \mathcal{F} \subseteq \mathcal{N}^*$, then all \mathcal{F} -constrained groups have \mathcal{F} -injectors.

The aim of this paper is mainly to prove the following:

THEOREM. (a) Let G be a group, X an \mathcal{F} -injector of L(G). If $N_G(X)$ has \mathcal{F} -injectors, these are also \mathcal{F} -injectors of G.

(b) If all F-constrained groups have F-injectors then all groups have F-injectors.

Before proving the theorem we give the following results.

LEMMA 1. Let G_i be a non-abelian simple group, i = 1, ..., n and $G = G_1 \times \cdots \times G_n$, then G contains \mathcal{F} -injectors which are the product of the \mathcal{F} -injectors of the factors.

PROOF. By induction over *n*. First we suppose n = 2. Let V_1 , V_2 be \mathscr{F} -injectors of G_1 , G_2 respectively. Let V be an \mathscr{F} -maximal subgroup of G containing $V_1 \times V_2$. Since the only subnormal subgroups of G are 1, G_1 , G_2 , G, it is clear that V is an \mathscr{F} -injector of G. Moreover:

$$D = V_1 \times V_2 = (V \cap G_1) \times (V \cap G_2) \leq V_2$$

On the other hand, $VG_1/G_1 \in \mathcal{F}$ and this group contains $(V \cap G_2)G_1/G_1 \cong V \cap G_2$ that is an \mathcal{F} -injector of G_2 . Hence $VG_1 = (V \cap G_2)G_1$ and so: $|V| = |V \cap G_1| |V \cap G_2|$ and $V = V_1 \times V_2$.

Now suppose n > 2. Let V_i be an \mathscr{F} -injector of G_i , i = 1, ..., n and let V be an \mathscr{F} -maximal of G containing $V_1 \times V_2 \times \cdots \times V_n$.

Put $N = G_1 \times G_2 \times \cdots \times G_{n-1}$, then $V \cap N = V_1 \times V_2 \times \cdots \times V_{n-1}$ by inductive hypothesis. On the other hand $VN/N \in \mathcal{F}$ and this group contains $(V \cap G_n)N/N \cong V \cap G_n$ that is an \mathcal{F} -injector of $G_n \cong G/N$, hence: $VN = (V \cap G_n)N$ and so $|V| = |V \cap G_n| |V \cap N|$. Therefore $V = V_1 \times \cdots \times V_n$. Finally since every subnormal subgroup of G is a product of some G_i , now we have, by inductive hypothesis, that $V = V_1 \times V_2 \times \cdots \times V_n$ is an \mathcal{F} -injector of G.

LEMMA 2. A group G possesses \mathcal{F} -injectors if and only if G/Z(G) possesses \mathcal{F} -injectors.

PROOF. Let H be an \mathscr{F} -injector of G and $G^*/Z(G) \trianglelefteq \boxdot G/Z(G)$, then: $H/Z(G) \cap G^*/Z(G) = (H \cap G^*)/Z(G)$. Since \mathscr{F} is extensible by central subgroups, it follows that $(H \cap G^*)/Z(G)$ is \mathscr{F} -maximal subgroup of $G^*/Z(G)$. Therefore H/Z(G) is an \mathscr{F} -injector of G/Z(G). Conversely, assume that H/Z(G) is an \mathscr{F} -injector of G/Z(G) and $G^* \leq G$. Let $H \cap G^* \leq F \leq G^*$, $F \in \mathscr{F}$, then we have:

 $(H \cap G^*)Z(G)/Z(G) \leq FZ(G)/Z(G) \leq G^*Z(G)/Z(G) \leq G/Z(G);$

since $FZ(G)/Z(G) \in \mathcal{F}$, it follows that: $(H \cap G^*)Z(G) = FZ(G)$ and thus: $F = F \cap (H \cap G^*)Z(G) = (H \cap G^*)(F \cap Z(G)) = H \cap G^*$.

COROLLARY 1. If G is a semisimple group, then G contains \mathcal{F} -injectors.

PROOF. Since G/Z(G) is a direct product of non-abelian simple groups, this is a consequence of Lemmas 1 and 2.

COROLLARY 2. Let G be a semisimple group $G = G_1G_2$ where G_i is a semisimple group, i = 1, 2 and $[G_1, G_2] = 1$. If J is an \mathcal{F} -injector of G, then: $J = (J \cap G_1)(J \cap G_2)$.

PROOF. By Lemma 2, J/Z(G) is an \mathscr{F} -injector of G/Z(G) and this is a direct product of non-abelian simple groups. Since $G/Z(G) = (G_1Z(G)/Z(G)) \times (G_2Z(G)/Z(G))$, we can apply Lemma 1 to obtain:

$$J/Z(G) = (J/Z(G) \cap G_1 Z(G))/Z(G))(J/Z(G) \cap G_2 Z(G))/Z(G))$$

and hence:

 $J = (J \cap G_1 Z(G))(J \cap G_2 Z(G)) = (J \cap G_1)(J \cap G_2)Z(G) = (J \cap G_1)(J \cap G_2)$ since $Z(G) = Z(G_1)Z(G_2)$.

PROOF OF THE THEOREM. (a) Let J be an \mathscr{F} -injector of $N_G(X)$. First we prove that J is an \mathscr{F} -maximal subgroup of G.

Let H be an \mathscr{F} -subgroup of G such that $J \leq H \leq G$. Then $H \cap L(G) = X$ and hence $H \leq N_G(X)$ and J = H.

Using induction on |G|, we can now prove that J is an \mathscr{F} -injector of G. Let G^* be a maximal normal subgroup of G. We can consider two cases: Case 1. $L(G) \leq G^*$

In this case: $L(G) = L(G^*)$, X is an \mathscr{F} -injector of $L(G^*)$ and $J \cap G^*$ is an \mathscr{F} -injector of $N_G(X) \cap G^* = N_G \cdot (X)$. By inductive hypothesis it follows that $J \cap G^*$ is an \mathscr{F} -injector of G^* .

Case 2. $L(G) \not\leq G^*$

In this case $L(G) = L(G^*)R$ where R is a semisimple normal subgroup of G and $[L(G) \cap G^*, R] = 1$.

Notice that:

$$[G^*, R] \leq [G^*, L(G)] \leq G^* \cap L(G).$$

The three-subgroups lemma together with the perfectness of R yield that $[G^*, R] = 1$.

Now, by Corollary 2 we obtain:

$$X = (X \cap L(G^*))(X \cap R)$$

and so

$$N_{G^*}(X \cap L(G^*)) \leq N_{G^*}(X) \leq N_{G^*}(X \cap L(G^*)).$$

Since $J \cap G^*$ is an \mathscr{F} -injector of $N_G \cdot (X) = N_G \cdot (X \cap L(G^*))$, using inductive hypothesis we obtain that $J \cap G^*$ is an \mathscr{F} -injector of G^* .

(b) Let G be a counterexample of minimal order. We can suppose that $L(G) \notin \mathcal{F}$, because if $L(G) \in \mathcal{F}$ then G would be an \mathcal{F} -constrained group.

Let X be an \mathscr{F} -injector of L(G). If $N_G(X) < G$ then $N_G(X)$ contains \mathscr{F} -injectors and by part (a) it follows that G contains \mathscr{F} -injectors, a contradiction. Therefore $N_G(X) = G$ and so $X \triangleleft L(G)$ hence L(G) = XR, where R is a non-trivial semisimple normal subroup of L(G) and [X, R] = 1. Then $X \cap R = Z(R)$ is an \mathscr{F} -injector of R. Whence, using Lemma 2, it follows that 1 is an \mathscr{F} -injector of R/Z(R) and so R/Z(R) = 1, thus R is trivial, a contradiction.

COROLLARY 3. If $\mathcal{N} \subseteq \mathcal{F} \subseteq \mathcal{N}^*$, then all groups have \mathcal{F} -injectors. In particular, all groups have \mathcal{N} -injectors.

PROOF. By ([5]) we know that all \mathscr{F} -constrained groups have \mathscr{F} -injectors and so it suffices to apply part (b) of the above theorem.

The particular case $\mathscr{F} = \mathscr{N}$ has been recently obtained by P. Förster ([2]).

REMARKS.

(1) If \mathscr{F} verifies the hypothesis of part (a) of the theorem, and G is a group, then every \mathscr{F} -injector of L(G) is contained in an \mathscr{F} -injector of G.

(2) Let G be a group such that every \mathcal{F} -injector of L(G) is contained in an \mathcal{F} -injector of G. Suppose that G possesses a unique conjugacy class of \mathcal{F} -injectors, then G is an \mathcal{F} -constrained group.

Indeed, let I_1 , I_2 be \mathscr{F} -injectors of L(G) and V_1 , V_2 \mathscr{F} -injectors of G containing I_1 , I_2 respectively, then there exists $g \in G$ such that $V_2 = V_1^g$ and so: $I_1^g = V_1^g \cap L(G) = V_2 \cap L(G) = I_2$. Let p, q be prime divisors of |G| with $p \neq q$ and P, Q p, q-Sylow subgroups of L(G) respectively. Then there exist I_1, I_2 \mathscr{F} -injectors of L(G) such that $P \leq I_1$ and $Q \leq I_2$. Thus $P^g \leq I_1^g = I_2$ for a $g \in G$. With this method we can obtain that $L(G) \in \mathscr{F}$ and then G is an \mathscr{F} -constrained group.

FITTING CLASSES

(3) Let V_1 , V_2 be \mathcal{N} -injectors of a group G, such that $V_1 \cap C_G(F(G))$ and $V_2 \cap C_G(F(G))$ are conjugated in G. Then V_1 and V_2 are conjugated in G.

In fact, there exists $g \in G$ such that $V_1^g \cap C_G(F(G)) = V_2 \cap C_G(F(G)) = I$, then V_1^g and V_2 are \mathcal{N} -maximal subgroups of G containing IF(G). Clearly $C_G(IF(G)) = C_{C_G(F(G))}(I) \leq I$ and using Lausch's theorem ([6]) we obtain that V_1 and V_2 are conjugated in G.

(4) Let π be a set of prime numbers. The classes

$$\chi_{\pi} = \{ G \mid G = F(G)O_{\pi}(L(G)) \}$$

are examples of homomorphs of Fitting \mathscr{F} verifying $E_z \mathscr{F} = \mathscr{F}$. These classes of quasinilpotent groups contain the nilpotent groups.

(5) Let \mathcal{H} be a Fitting class. Assume: (i) $\mathcal{N} \subseteq \mathcal{H} \subseteq \mathcal{N}^*$ and (ii) whenever $G \in \mathcal{H}$ it follows that $G/Z \in \mathcal{H}$ for every $Z \leq Z(G)$. Then \mathcal{H} is an homomorph.

REFERENCES

1. D. Blessenohl and H. Laue, Fittingklassen endlicher Gruppen, in denen gewisse Haupfaktoren einfach sind, J. Algebra 56 (1979), 516-532.

2. P. Förster, Nilpotent injectors in finite groups, Bull. Austral. Math. Soc., to appear.

3. D. Gorenstein and J. Walter, The π -layer of a finite group, Ill. J. Math. 15 (1971), 555-564.

4. B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982.

5. M. J. Iranzo and F. Pérez Monasor, *F-constraint with respect to a Fitting class*, Arch. Math., to appear.

6. H. Lausch, Conjugacy classes of maximal nilpotent subgroups, Isr. J. Math. 47 (1984), 29-31.

7. A. Mann, Injectors and normal subgroups of finite groups, Isr. J. Math. 9 (1971), 554-558:

8. F. Pérez Monasor, Grupos finitos separados respecto de una Formación de Fitting, Rev. Acad. Ciencias de Zaragoza, serie 2⁴, XXVIII, 3 (1973), 253-301.